%
Calcolatore di Percentuali
Scienza

Come calcolare l'errore percentuale

Scopri la formula dell'errore percentuale, comprendi errore assoluto vs relativo e i range di errore accettabili in scienza e ingegneria.

Cos'è l'errore percentuale?

L'errore percentuale misura l'accuratezza di una misurazione o stima confrontandola con il valore vero o accettato. È ampiamente usato in scienza, ingegneria e statistica per esprimere quanto un valore misurato si discosta dal valore atteso. Un errore percentuale più basso indica un risultato più accurato.

La formula dell'errore percentuale

Errore percentuale = (|Valore misurato - Valore vero| ÷ |Valore vero|) × 100

I segni di valore assoluto (| |) assicurano che il risultato sia sempre positivo, indicando l'entità dell'errore indipendentemente dalla direzione.

Esempio passo per passo

In un esperimento di laboratorio, hai misurato il punto di ebollizione dell'acqua a 99,1°C. Il valore accettato è 100,0°C:

  1. Trovare la differenza: |99,1 - 100,0| = 0,9
  2. Dividere per il valore vero: 0,9 ÷ 100,0 = 0,009
  3. Convertire in percentuale: 0,009 × 100 = 0,9% di errore

Tipi di errore

Errore assoluto

Errore assoluto = |Valore misurato - Valore vero|

L'errore assoluto indica l'entità dell'errore nella stessa unità di misura. Nell'esempio sopra, l'errore assoluto è 0,9°C.

Errore relativo

Errore relativo = |Valore misurato - Valore vero| ÷ |Valore vero|

L'errore relativo è un rapporto adimensionale. Moltiplica per 100 per ottenere l'errore percentuale. Nell'esempio, l'errore relativo è 0,009.

Tabella di confronto

Tipo di errore Formula Risultato (esempio) Unità
Errore assoluto|Misurato - Vero|0,9°C
Errore relativoAssoluto ÷ Vero0,009Nessuna
Errore percentualeRelativo × 1000,9%%

Esempi da diversi campi

Laboratorio di chimica

Hai determinato la densità dell'alluminio a 2,68 g/cm³. Il valore accettato è 2,70 g/cm³:

Errore = (|2,68 - 2,70| ÷ 2,70) × 100 = (0,02 ÷ 2,70) × 100 = 0,74%

Esperimento di fisica

La tua misurazione dell'accelerazione gravitazionale è stata 9,72 m/s². Il valore accettato è 9,81 m/s²:

Errore = (|9,72 - 9,81| ÷ 9,81) × 100 = (0,09 ÷ 9,81) × 100 = 0,92%

Stima nella vita quotidiana

Hai stimato che una stanza fosse lunga 12 piedi, ma la misurazione reale è 13,5 piedi:

Errore = (|12 - 13,5| ÷ 13,5) × 100 = (1,5 ÷ 13,5) × 100 = 11,1%

Range di errore accettabili

Campo Errore accettabile Note
Produzione farmaceutica< 1%Standard normativi rigorosi
Laboratori di chimica (università)1-5%Dipende dall'esperimento
Laboratori di fisica (università)1-5%Limitazioni strumentali
Ingegneria1-3%Margini di sicurezza necessari
Scienze biologiche5-10%Maggiore variazione naturale
Sondaggi in scienze sociali3-5%Margine di errore nei sondaggi

Fonti di errore

Consigli per ridurre l'errore percentuale

Prova il nostro calcolatore

Metti in pratica le tue conoscenze con il nostro calcolatore di percentuali.

Usa calcolatore